EXTREME-VALUE MODELLING OF
MIGRATORY BIRD ARRIVAL DATES:
INSIGHTS FROM CITIZEN SCIENCE DATA

Jonathan Koh, Thomas Opitz

UNIVERSITAT

RSS meeting 2024
Discussion paper session, 03/09/2024

KOH AND OPITZ (2024)



Extreme-value modelling of
migratory bird arrival dates:
Insights from citizen science data
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How does eBird work? Gitizen

Science

1. Dr. Andrew Garrett is a birder

2. While hiking, he opens the eBird app and starts a checklist’. The app
notes the date and time he starts birding, where he has travelled during
the checklist and how long he has been birding
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How does eBird work? Gitizen

Science

3. He spots a Mallard, and can easily record it in the app (based on a
pack of recommended bird species)

Mallard x Ame
(hybrid)

Mallard x Nor
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How does eBird work? Gitizen

Science

4. He spots an Osprey, and records it in the app. He can also supply more
information (including media files)
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How does eBird work? Gitizen

Science

5. He finishes his checklist and submits his data to eBird

6. eBird internally verifies it, and it goes into their database

eBird
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eBird data processing

eBird
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eBird data processing Citizer

Science
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eBird data processing Citizer

Science
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eBird data processing

y.
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eBird data processing Citizer

Science
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eBird data processing Extreme-

Value
Theory
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eBird Citizen

Science

Strong temporal trends in reported occurrences
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First arrival dates vs. checklist counts Citizer

Science
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“Observational effort” Citizen

Science
_ Bayesign
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Citizen
Science

Observational effort = Preference + Activity

\ 4

space-time
varying

\ 4
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captured by the captured by the
sampling intensity  (median) time spent
for the checklists on the checklist




Breeding Bird Survey (BBS) sampling routes .
Science
* For each route (~40km),

bird occurrences are reported at 50 equidistant stops

 Complex data preprocessing (missing observations, missing stop coordinates, etc.)
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Bayesian
Hierarchical
Models

MODEL

KOH AND OPITZ (2024)



Bayesian

MOde"ing goa|S Hierarchical

Models

o Fit a realistic model to first arrival data, conditional on covariates
o (Correct for the observational bias from these datasets
* Use the model to make posterior predictions

» |nterpolate spatially to locations not visited, in a reasonable way
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Bayesian

A multi-response spatial regression system Hierarchical

Models

Multi-response spatial regression

kEroutej
kal | )\Ckla 0.1 ~ Pois {ACkl(Sz’,ti; 9ck1)} ;
NPC | NFKL pSPC 0, c ~ Bin{ N, pPC(s,t:;0spc)},

Z; | 22 9#70-7 0, ~ GEV{:U’(Siat’i;9#)70(81;90)76}7

Where 6bbsa Ockl, Ospca Bua 90 ~ Hyperpriors
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Bayesian

A multi-response spatial regression system Hierarchical

Models

Multi-response spatial regression

BBS — NJBBS | )\BBS,beS ~ POiS{ Z wk:)\BBS(Sk§ bes)} 9

kEroutej

kal | )\Ckla 0.1 ~ Pois {ACkl(Sz’,ti; 9ck1)} ;
Bird
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o Zi | My 9#70-7 0, ~ GEV{:U’(S%t’M 9#)70(87:; 90)76}7
where

6bbsa Ockl, Ospca Bua 90 ~ Hyperpriors
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Bayesian

Sharing randOm effeCtS Hierarchical

Models

Multi-response spatial regression

BBS — NJBBS | )\BBS,beS ~ POiS{ Z wk:)\BBS(Sk§ bes)} 9

kEroutej

N | A9, Ocxa ~ Pois { A (84,145 0, X"e() ~ GP(wo),
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Bayesian

Sharing randOm effeCtS Hierarchical

Models

Multi-response spatial regression

BBS — NJBBS | ABBS 0y ~ Pois{ Z wi AP (s 9bbs)} ;
/ _ kEroute;
i N A 0y ~ Pois ﬂ,\ckl(si, ti; Ock1) } X pref(-) ~ GP(w1).
eBird - NSPC| Nl psPe g~ Bin{ N, p°P°(s;, tyflnc)},
- Zi |, 0u,0,0 ~ GEV{u(si, ti;0,)0(si;05),&E}
where Obbss Ocxls Ospe, 0,., 0, ~ Hyperpriors
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Saturating effect of observational effort

Observed first arrival Is biased towards later dates for low effort
but is the true one for very high effort

Implementation: Z; ~ GEV(u;,0;) with u; = g(Predictors;, Effort;)

- Nonlinear function g reaches (unknown) finite upper bound for very high effort

Bayesian
Hierarchical
Models

Extreme-
Value
Theory

- Infer g from data 12-
- Set very high effort for bias-corrected predictions

0.9-

. Source of high computational complexity

g(xbounda Xeffort)
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Goodness-of-fit of estimated models

» Generally good match of eBird observations (left maps) with posterior means (right maps)
 Slight differences due to information shared from BBS
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lllustration of bias-corrected prediction of first arrivals (2022)

» Based on Generalised Extreme-Value response

» Bias-corrected prediction by fixing saturated oloservational effort
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lllustration of bias-corrected prediction of first arrivals (2022), cont’d

» [able of estimated key parameters and first arrival dates for two pixels
» Estimated (not bias-corrected) first arrivals tend to occur relatively earlier for

* higher Preference,
* higher Activity and
* In the core area of the niche

Species Chimney Swift Great Crested Flycatcher Chestnut-sided Warbler Purple Martin

gpref 0.191 (0.184,0.202) 0.204 (0.199,0.21) 0.187 (0.183,0.191) 0.2 (0.178,0.217)
gact -0.15 (-0.217,-0.061) -0.818 (-0.911,-0.696) -0.548 (-0.619,-0.454)  -0.03 (-0.269,0.236)
griche-GEV (5 1()—2) 4.9 (4.664,5.134) 4 (3.894,4.133) 0.2 (0.17,0.278) 6 (5.541,6.443)
Observed NA NA NA NA
Predicted 09/05 03/05 21/05 07106
Debiased 03/04 13/04 03/05 284063
Observed 01/05 04/05 04/05 29/06
Predicted 09/05 15/05 12/05 245
Debiased 22 /04 05/05 03/05 B
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Discussion: Ecological data fusion using latent processes

* |ncomplete and biased observation of true processes

* |nterpretable latent processes for effort and relevant ecological properties
- |dentifiablility thanks to shared random effects,

Bayesian pbut challenging validation

Hierarchical

 Towards spatiotemporal, not purely spatial, modellin
Models 9 9 purely sp 9

-> Improve modelling of temporal dynamics
. Requires disentangling complex observational/ecological dynamics

» (Could we implement shared latent processes in other learning algorithms”?
(GAMs, ANNs, Random Forests...)
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Citizen
Science
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Discussion: Bias and uncertainty reduction

» (Checklist data, such as eBird, allow generating pseudo-absences,
but many opportunistic datasets are less structured

» Data fusion of opportunistic and structured

Distribution Models is crucial (Fith

o (Collect

-2 EXp

Nng additior

ore optl

d

al exhaustive field data r

data in Integrated Species

ian et al 2015; |saac et al 2020)

ay be necessary

sampling design througr

simulation studies?




Discussion: Opportunities for ecological extreme-value analysis

 EVI generally less relevant for discrete data but promising for modelling
extreme phenological events, such as first arrivals

Extreme-
Value  EVI widely used for extreme climate and environmental events
Theory —> Such events can drive strong species population shifts

- Focus on specific events, not only long-term climate averages
-> Prolbabilities and simulation for high-impact events
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Outlook

» Rather basic handling of covariates and time trends in our model could be improved

» Extrapolated predictions could be validated using hold-out data by artificially reducing
observational effort during training

» Ecological datasets: Small Data and Big Data, but always complex...

- Wide opportunities for modelling and decision support S(ﬂitéznecne

- An exciting playground for statisticians!

Extreme- Bayesian
Value Hierarchical
Theory Models
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Food for thought
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