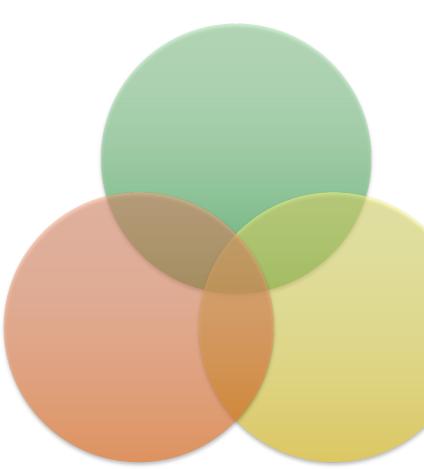
EXTREME-VALUE MODELLING OF MIGRATORY BIRD ARRIVAL DATES: INSIGHTS FROM CITIZEN SCIENCE DATA

Jonathan Koh, Thomas Opitz

UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH RSS meeting 2024 Discussion paper session, 03/09/2024

KOH AND OPITZ (2024)



Extreme-Value Theory

KOH AND OPITZ (2024)

Extreme-value modelling of migratory bird arrival dates: Insights from citizen science data

Citizen Science

Bayesian Hierarchical Models

< 2 >

Extreme-Value Theory

Extremes of ightarrowphenological events

KOH AND OPITZ (2024)

Citizen Science

- Data fusion
- **Observational bias**

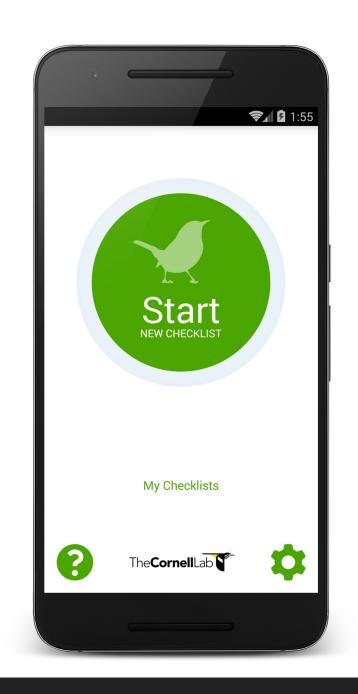
Bayesian Hierarchical Models

Inference on important ulletlatent processes

> <3 >

- 1. Dr. Andrew Garrett is a birder
- 2. While hiking, he opens the eBird app and starts a `checklist'. The app notes the date and time he starts birding, where he has travelled during the checklist and how long he has been birding

- 1. Dr. Andrew Garrett is a birder
- 2. While hiking, he opens the eBird app and starts a `checklist'. The app notes the date and time he starts birding, where he has travelled during the checklist and how long he has been birding



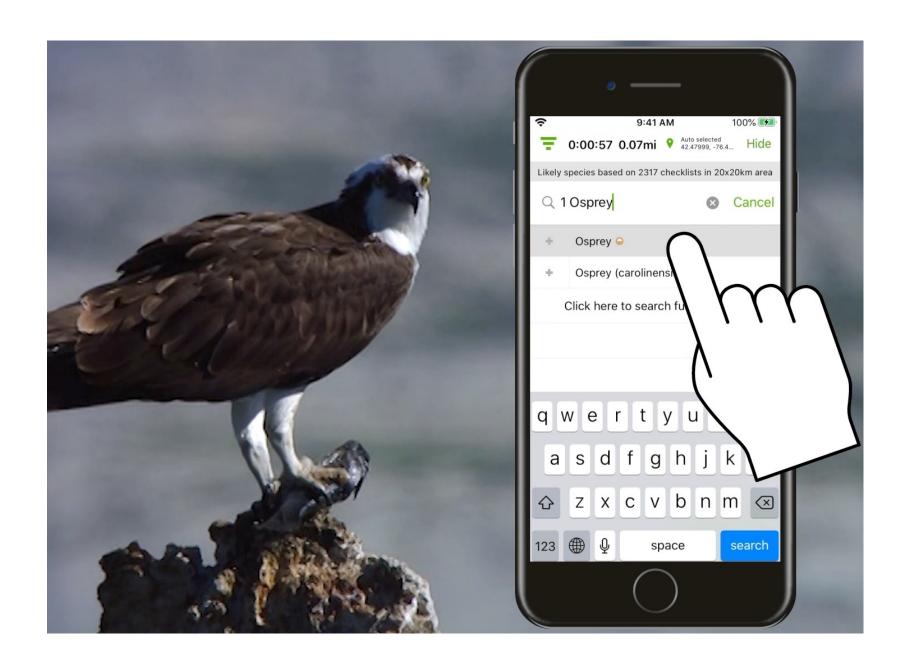
< 5 **>**

pack of recommended bird species)

gs	-		F	-	25	200		198	-		
				-		-				١	
d	ĉ			9	:41 A	М		100)% 💋	1	
4	Ŧ	0:00	:34	0.03	mi	Auto 42.4	selecte 7999, -7	d '6.4	Hide	I	
	Likely	species	s base	d on 2	317 cl	hecklis	ts in 2	0x20ki	m area	I	
	Q 2 Mallard S Cancel									I	
	+	Mal	lard	(1					I	
l	+	Mal	lard (Ì	type			\sim	I	
I	+	Mal	lard//	Ame		ľ	X	Y			
	 Mallard x Ame (hybrid) 										
I	Mallard x Nort										
	qwert										
	а	S	d	f	g	h	1			1	
I	↔	z	x	С	V	b	n	m	$\langle \times \rangle$		
	123		Ŷ		spa	ace		sea	arch		

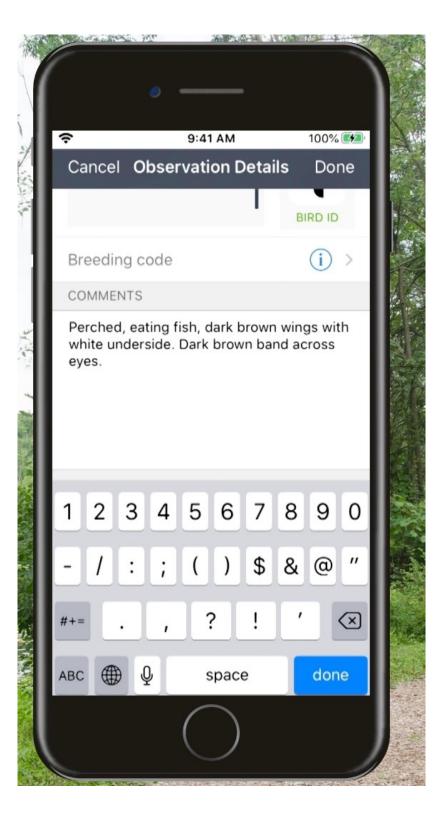
3. He spots a Mallard, and can easily record it in the app (based on a

information (including media files)



KOH AND OPITZ (2024)

4. He spots an Osprey, and records it in the app. He can also supply more

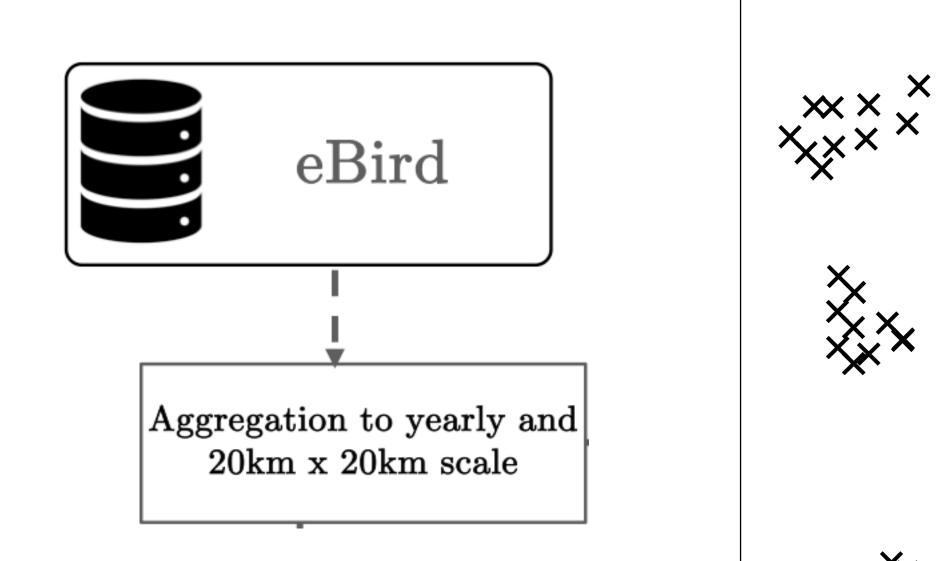


- 5. He finishes his checklist and submits his data to eBird
- 6. eBird internally verifies it, and it goes into their database

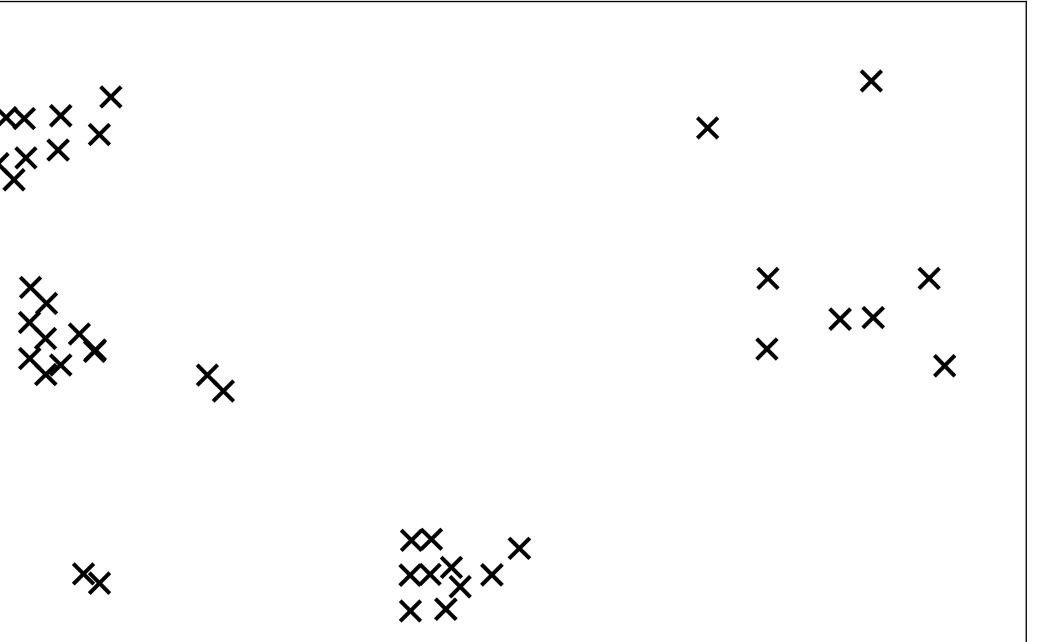
eBird

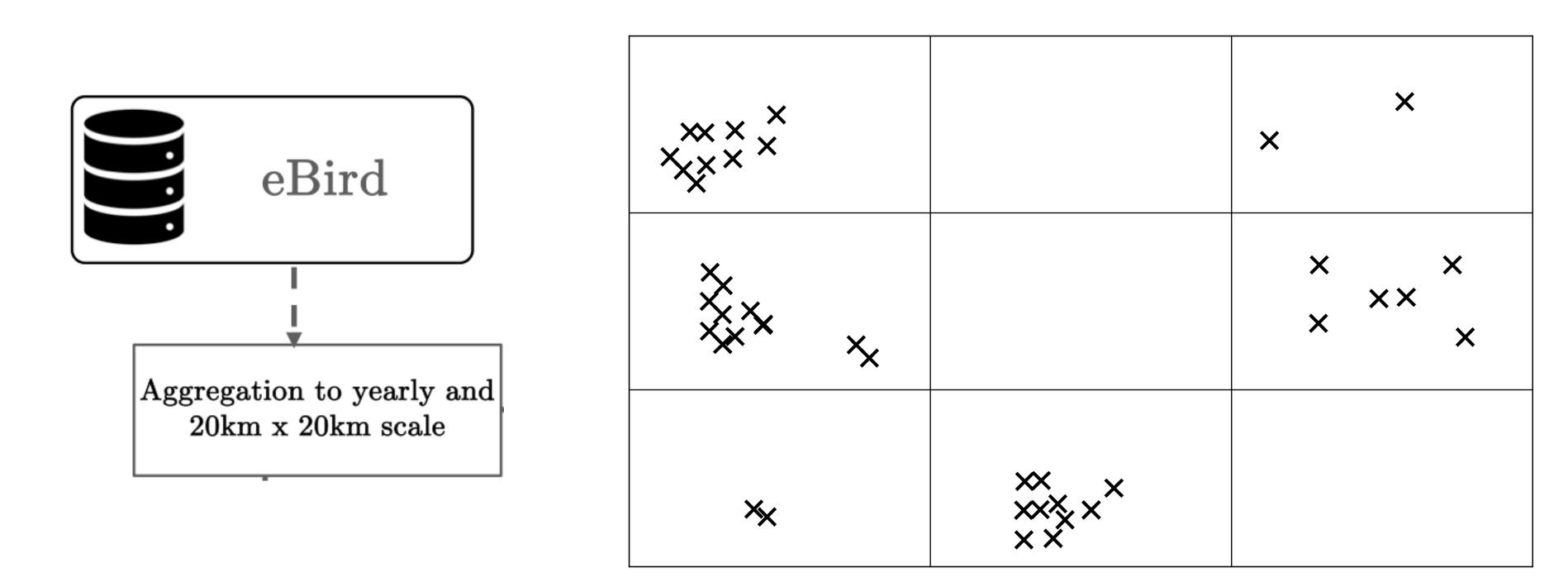
Citizen Science

8 >

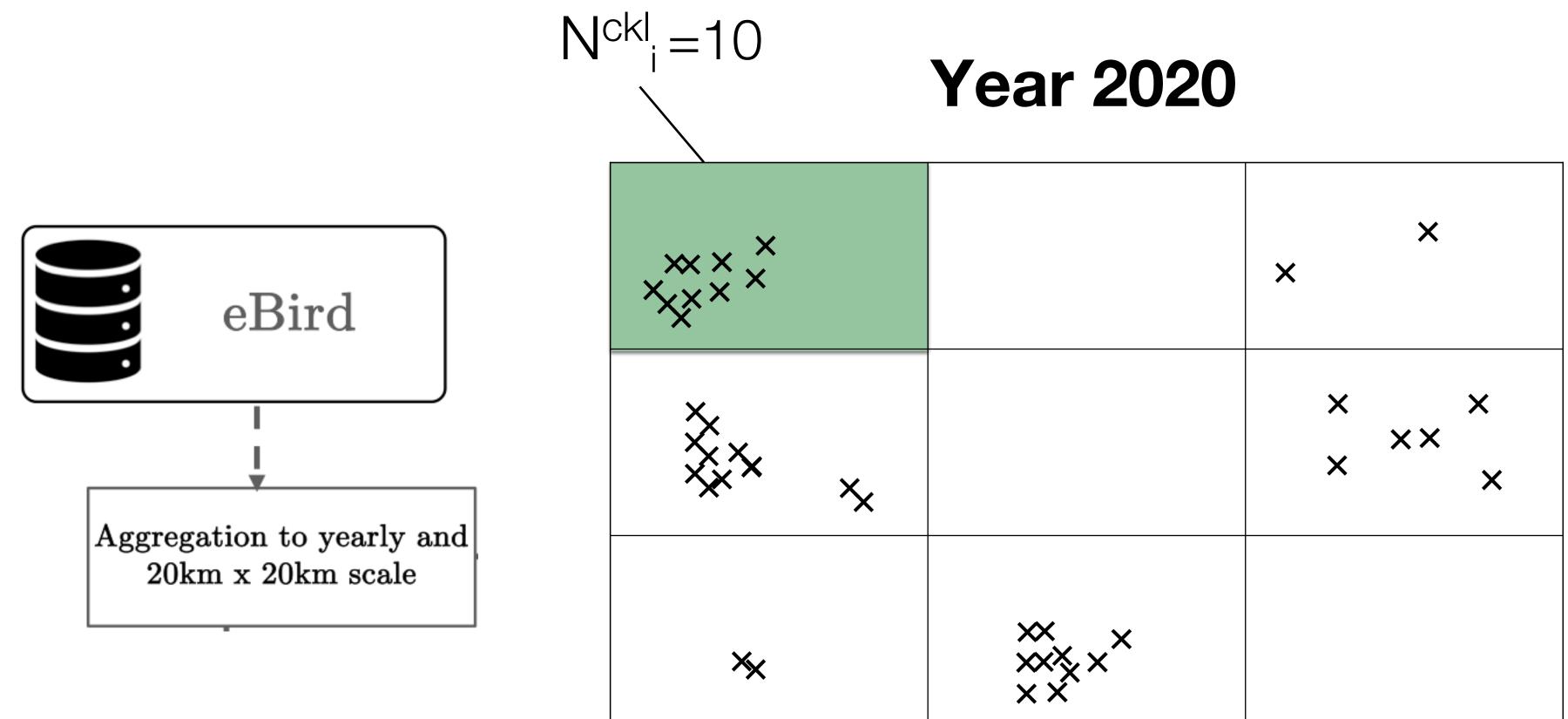


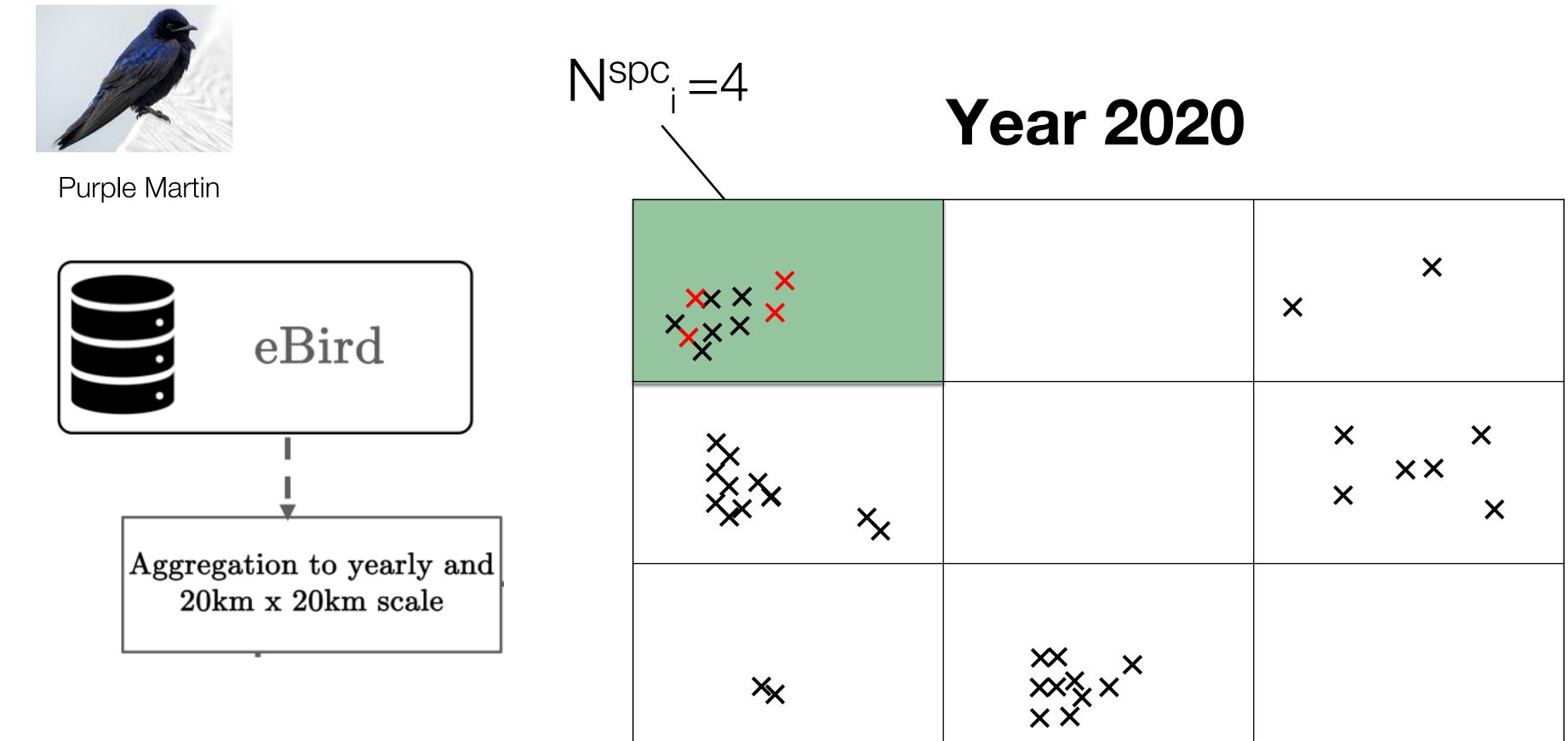
Year 2020

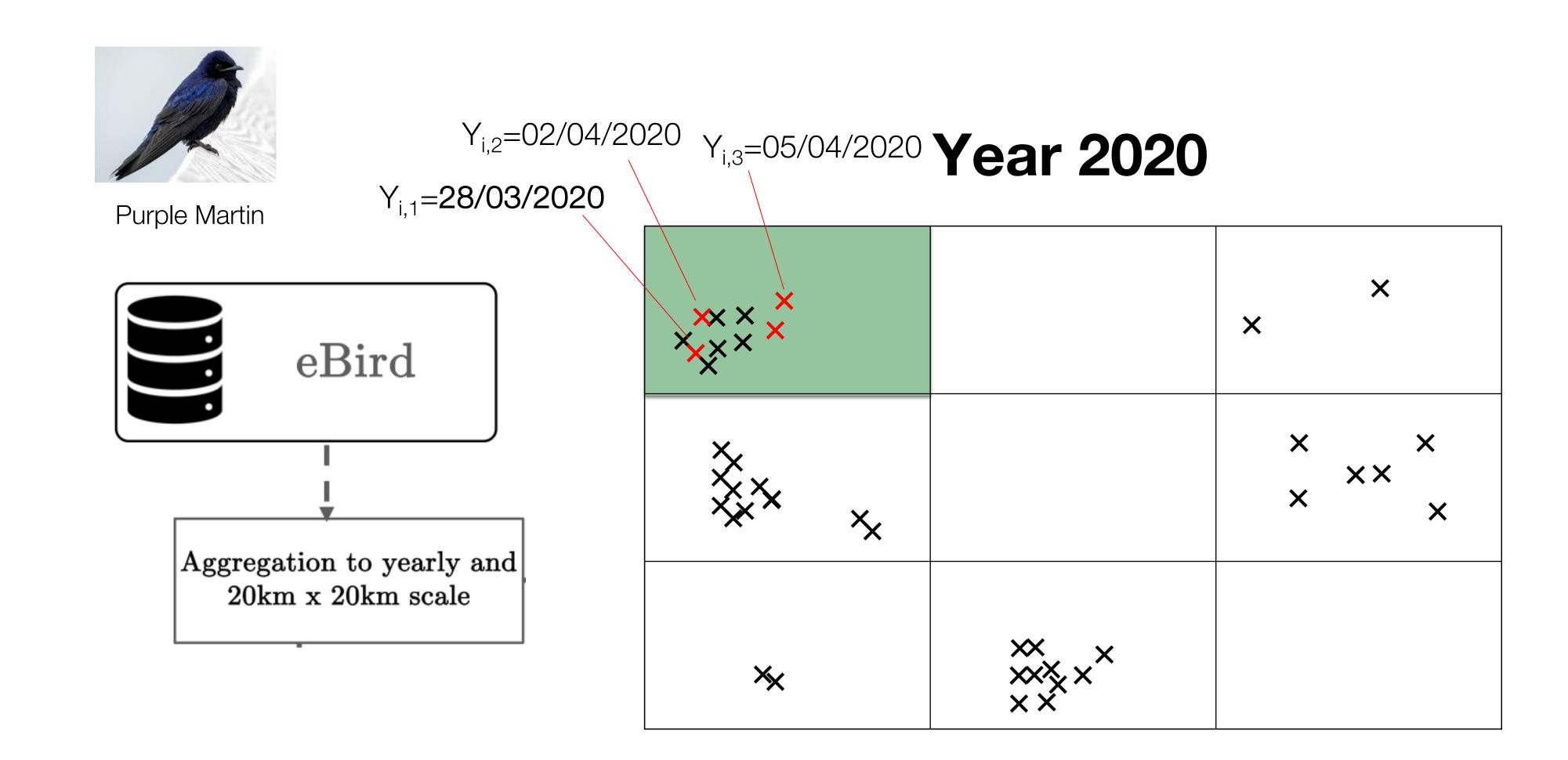




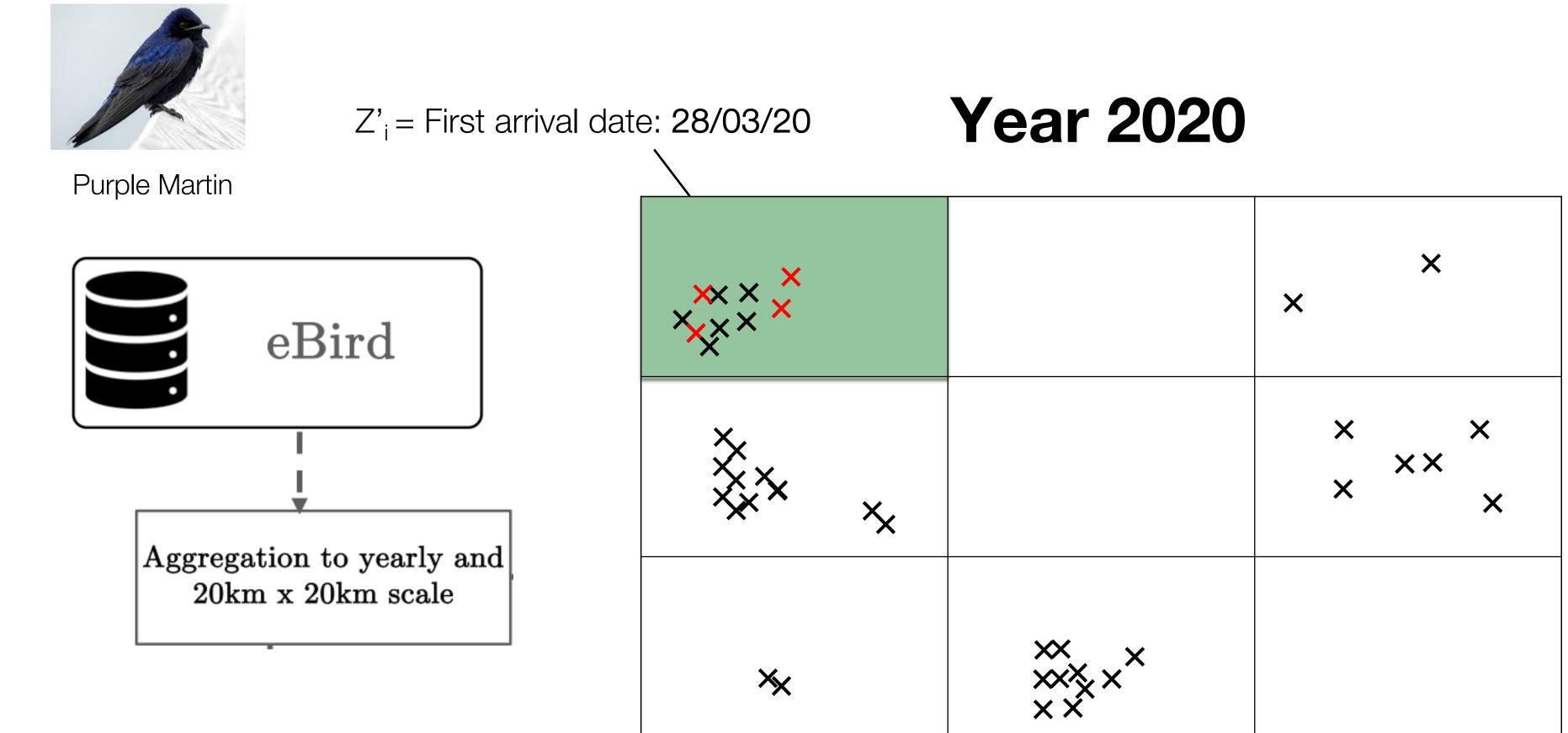
Year 2020







< 13 >

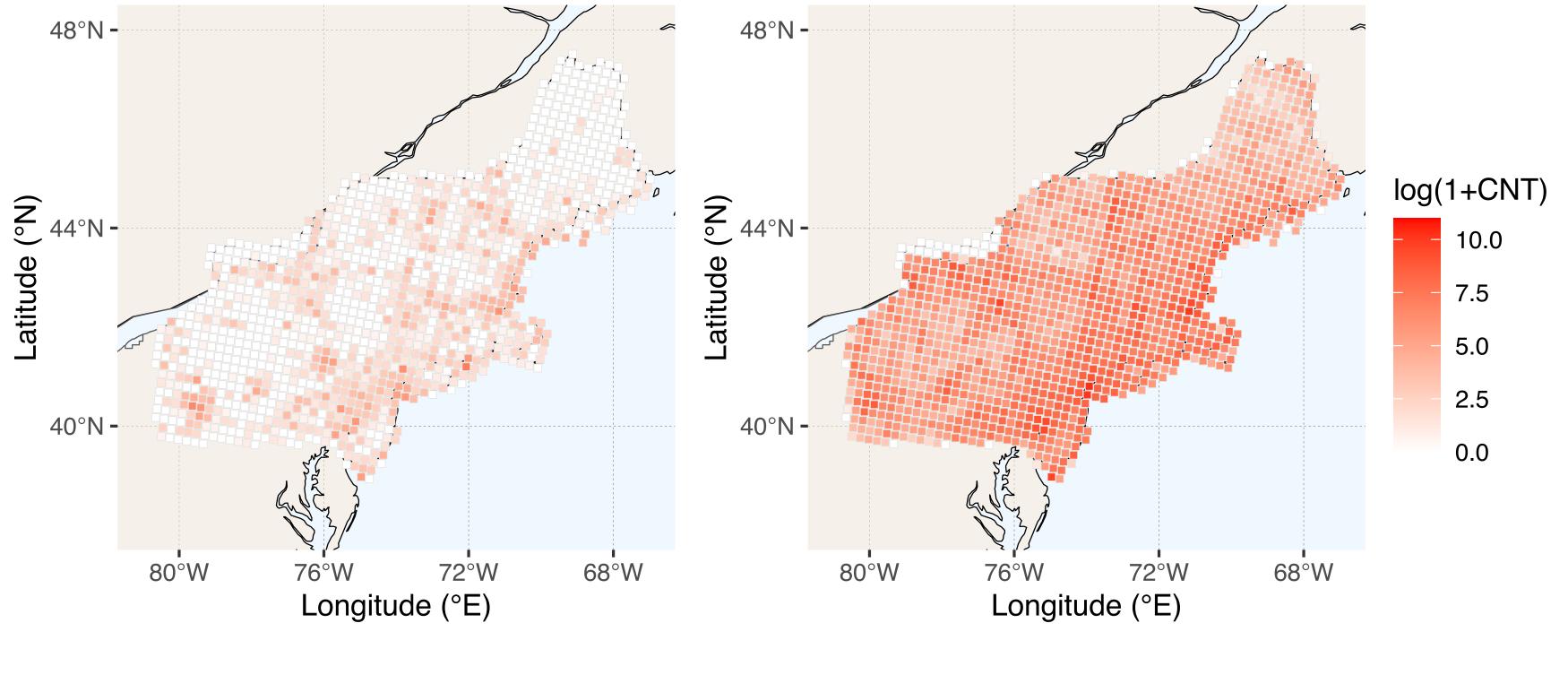


Extreme-Value Theory

Wijeyakulasuriya et al. (2023)

< 14 >

2001

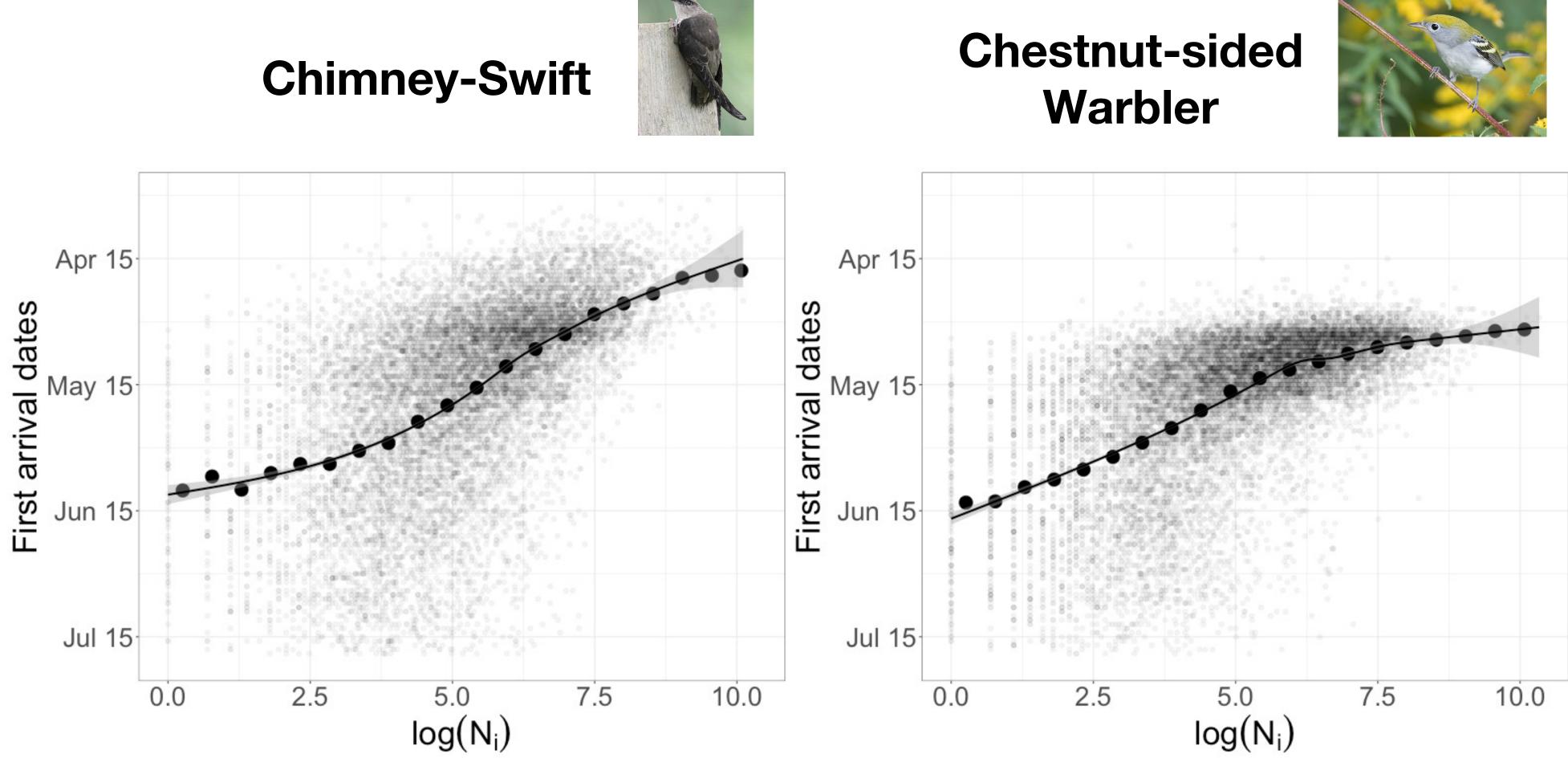


Citizen Science

Strong temporal trends in reported occurrences

2021

First arrival dates vs. checklist counts

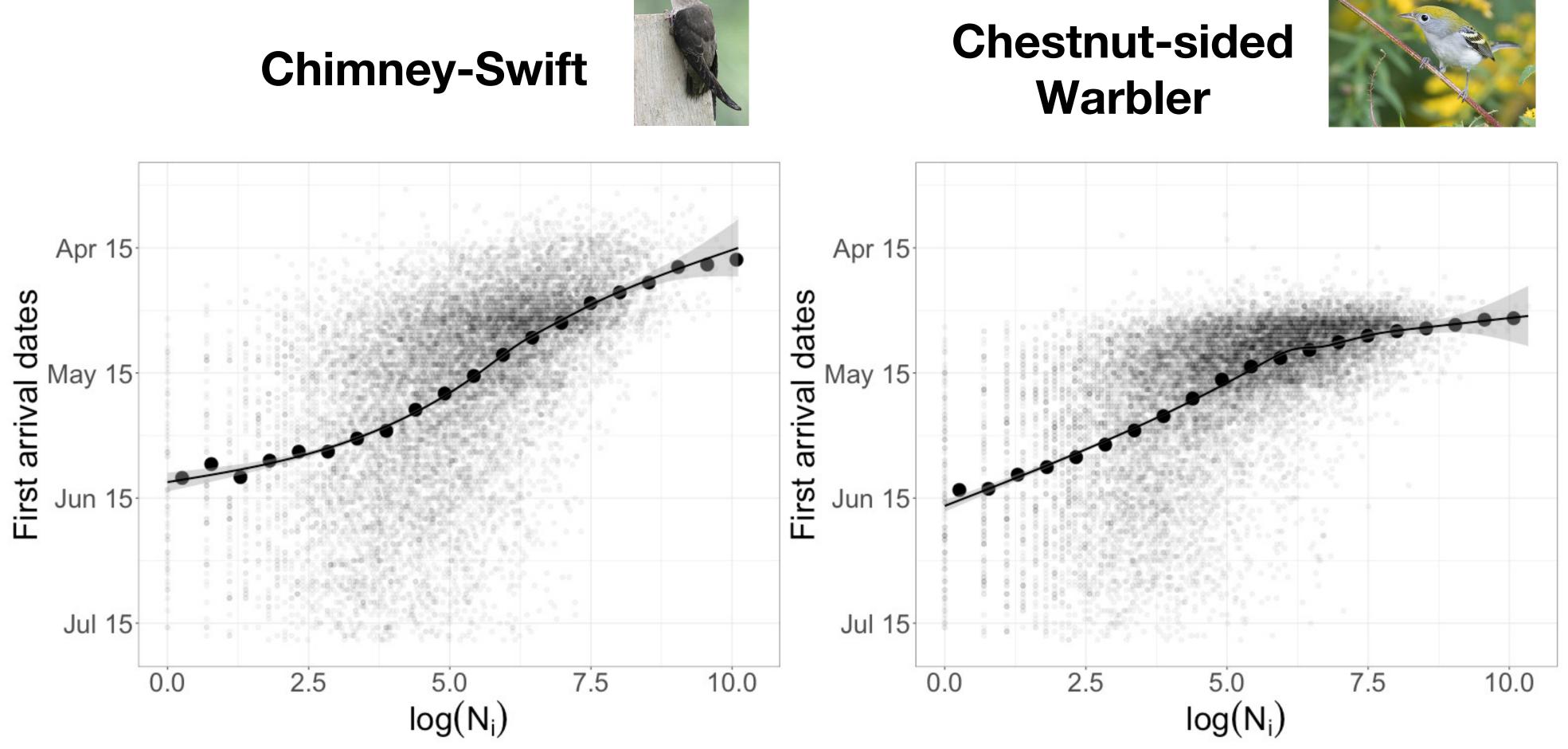


Citizen Science

Bayesian Hierarchical Models

< 16 >

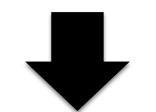
"Observational effort"



Citizen Science

Bayesian Hierarchical Models

< 17 >

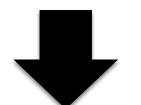


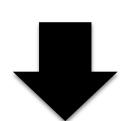
space-time varying

KOH AND OPITZ (2024)

Citizen Science

Observational effort = Preference + Activity



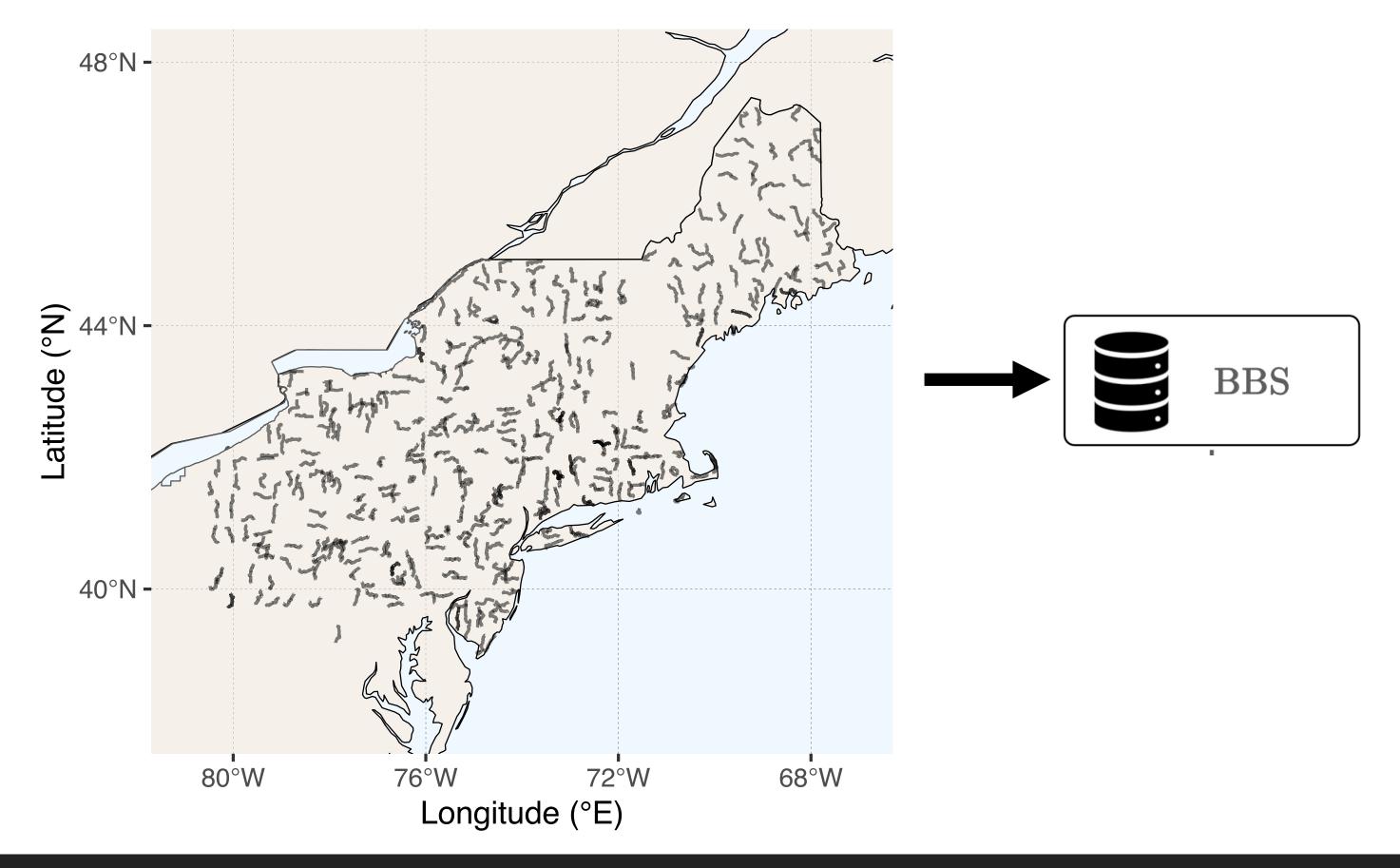


captured by the sampling intensity for the checklists

captured by the (median) time spent on the checklist

Breeding Bird Survey (BBS) sampling routes

- For each route (~40km), bird occurrences are reported at 50 equidistant stops
- ullet



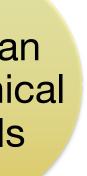
Citizen Science

Complex data preprocessing (missing observations, missing stop coordinates, etc.)

KOH AND OPITZ (2024)

Bayesian Hierarchical Models

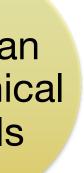
MODEL



Modelling goals

- Fit a realistic model to first arrival data, conditional on covariates
- Correct for the observational bias from these datasets lacksquare
- Use the model to make posterior predictions ullet
- Interpolate spatially to locations not visited, in a <u>reasonable</u> way \bullet

Bayesian **Hierarchical** Models



A multi-response spatial regression system

Multi-response spatial regression

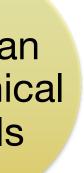
- $N_i^{\mathrm{BBS}} \mid \lambda^{\mathrm{BBS}}, \boldsymbol{\theta}_{\mathrm{bbs}} \sim \mathrm{P}$
- $N_i^{\mathrm{ckl}} \mid \lambda^{\mathrm{ckl}}, \boldsymbol{\theta}_{\mathrm{ckl}} \sim \mathrm{P}$ $N_i^{\mathrm{spc}} \mid N_i^{\mathrm{ckl}}, p^{\mathrm{spc}}, \boldsymbol{\theta}_{\mathrm{spc}} \sim \mathrm{B}$ $Z_i \mid \mu, \theta_{\mu}, \sigma, \theta_{\sigma} \sim G$

where

KOH AND OPITZ (2024)

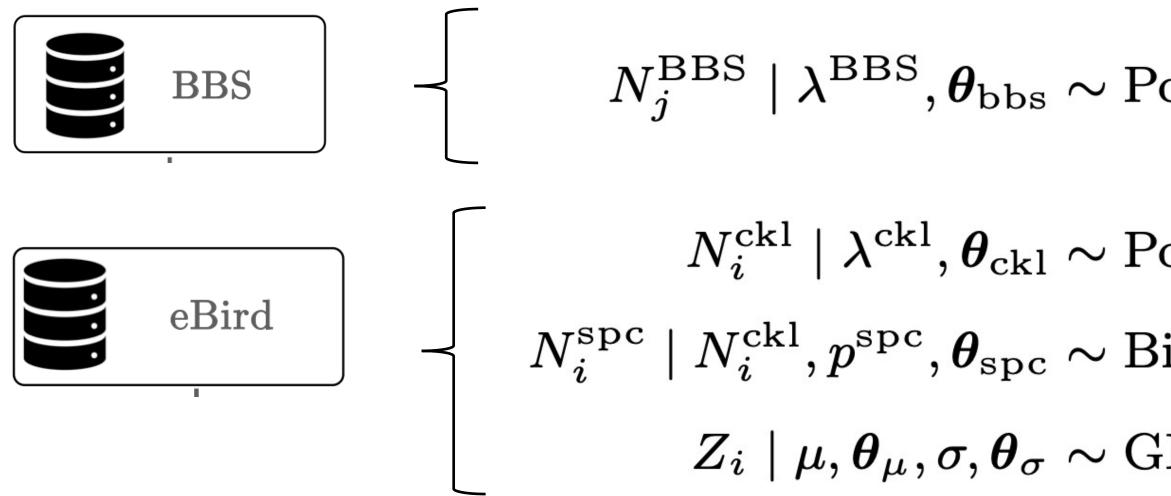
Bayesian **Hierarchical** Models

$$\begin{aligned} &\text{Pois}\left\{\sum_{k \in \text{route}_{j}} \omega_{k} \lambda^{\text{BBS}}(\boldsymbol{s}_{k}; \boldsymbol{\theta}_{\text{bbs}})\right\}, \\ &\text{Pois}\left\{\lambda^{\text{ckl}}(\boldsymbol{s}_{i}, t_{i}; \boldsymbol{\theta}_{\text{ckl}})\right\}, \\ &\text{Bin}\left\{N^{\text{ckl}}_{i}, p^{\text{spc}}(\boldsymbol{s}_{i}, t_{i}; \boldsymbol{\theta}_{\text{spc}})\right\}, \\ &\text{GEV}\left\{\mu(\boldsymbol{s}_{i}, t_{i}; \boldsymbol{\theta}_{\mu}), \sigma(\boldsymbol{s}_{i}; \boldsymbol{\theta}_{\sigma}), \xi\right\}, \end{aligned}$$



A multi-response spatial regression system

Multi-response spatial regression

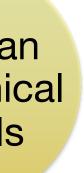


where

KOH AND OPITZ (2024)

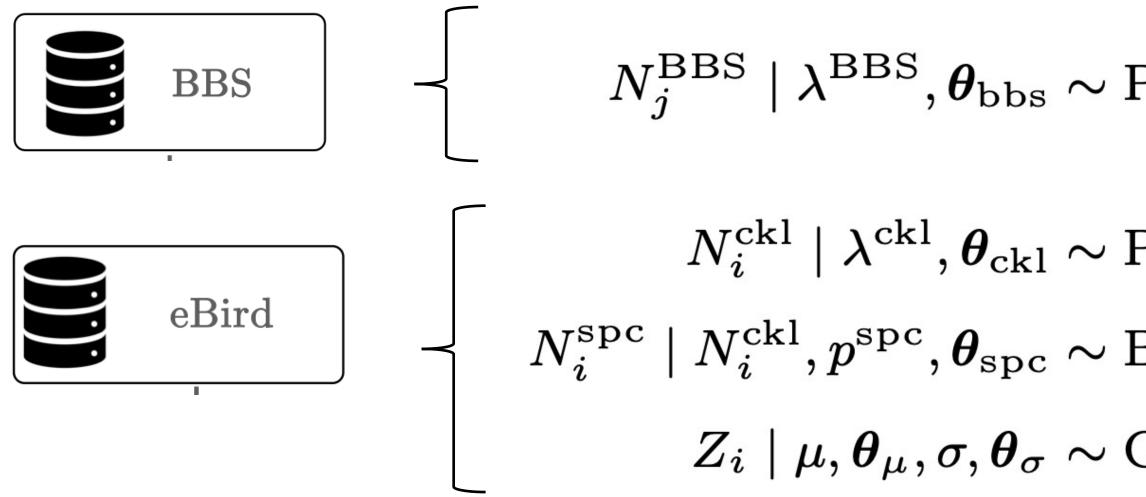
Bayesian **Hierarchical** Models

$$\begin{aligned} &\text{Pois}\left\{\sum_{k \in \text{route}_{j}} \omega_{k} \lambda^{\text{BBS}}(\boldsymbol{s}_{k}; \boldsymbol{\theta}_{\text{bbs}})\right\}, \\ &\text{Pois}\left\{\lambda^{\text{ckl}}(\boldsymbol{s}_{i}, t_{i}; \boldsymbol{\theta}_{\text{ckl}})\right\}, \\ &\text{Bin}\left\{N^{\text{ckl}}_{i}, p^{\text{spc}}(\boldsymbol{s}_{i}, t_{i}; \boldsymbol{\theta}_{\text{spc}})\right\}, \\ &\text{GEV}\left\{\mu(\boldsymbol{s}_{i}, t_{i}; \boldsymbol{\theta}_{\mu}), \sigma(\boldsymbol{s}_{i}; \boldsymbol{\theta}_{\sigma}), \xi\right\}, \end{aligned}$$



Sharing random effects

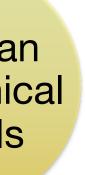
Multi-response spatial regression BBS $\left\{ N_{j}^{\text{BBS}} \mid \lambda^{\text{BBS}}, \boldsymbol{\theta}_{\text{bbs}} \sim \text{Pois} \left\{ \sum_{k \in \text{route}_{j}} \omega_{k} \lambda^{\text{BBS}}(\boldsymbol{s}_{k}; \boldsymbol{\theta}_{\text{bbs}}) \right\},\right\}$ $\stackrel{\text{eBird}}{=} \begin{cases} N_i^{\text{ckl}} \mid \lambda^{\text{ckl}}, \boldsymbol{\theta}_{\text{ckl}} \sim \text{Pois} \left\{ \lambda^{\text{ckl}}(\boldsymbol{s}_i, t_i; \boldsymbol{\theta}_{\text{ck}}) \right\}, \\ N_i^{\text{spc}} \mid N_i^{\text{ckl}}, p^{\text{spc}}, \boldsymbol{\theta}_{\text{spc}} \sim \text{Bin} \left\{ N_i^{\text{ckl}}, p^{\text{spc}}(\boldsymbol{s}_i, t_i; \boldsymbol{\theta}_{\text{spc}}) \right\}, \\ Z_i \mid \mu, \boldsymbol{\theta}_{\mu}, \sigma, \boldsymbol{\theta}_{\sigma} \sim \text{GEV} \left\{ \mu(\boldsymbol{s}_i, t_i; \boldsymbol{\theta}_{\mu}), \sigma(\boldsymbol{s}_i, \sigma_{\sigma}), \xi \right\}, \end{cases} \\ \end{cases}$

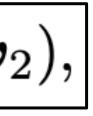


where

KOH AND OPITZ (2024)

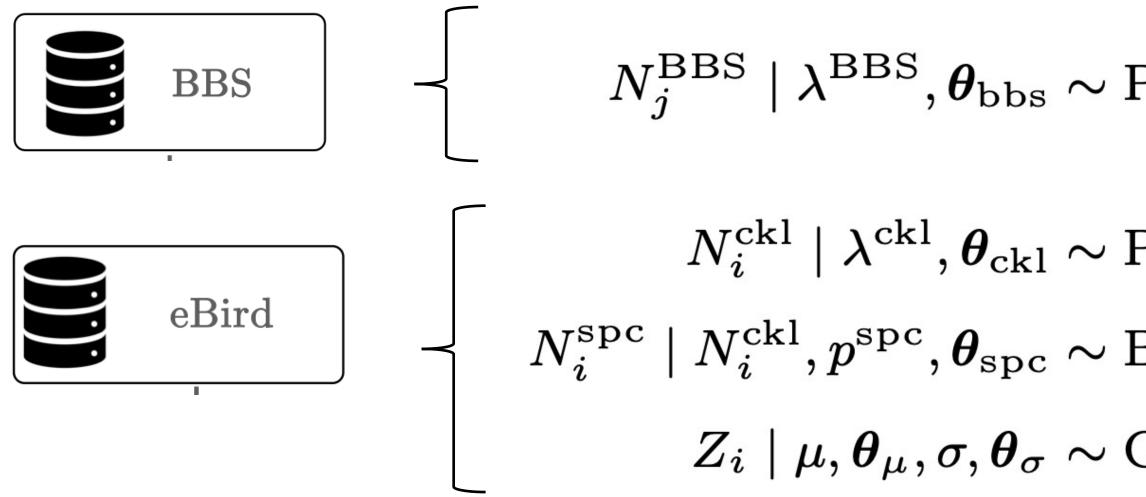
Bayesian **Hierarchical** Models





Sharing random effects

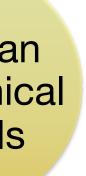
Multi-response spatial regression BBS $\left\{ N_j^{\text{BBS}} \mid \lambda^{\text{BBS}}, \boldsymbol{\theta}_{\text{bbs}} \sim \text{Pois} \left\{ \sum_{k \in \text{route}_j} \omega_k \lambda^{\text{BBS}}(\boldsymbol{s}_k; \boldsymbol{\theta}_{\text{bbs}}) \right\},$ $\stackrel{\text{eBird}}{=} \left\{ \begin{array}{c} N_i^{\text{ckl}} \mid \lambda^{\text{ckl}}, \boldsymbol{\theta}_{\text{ckl}} \sim \text{Pois} \left\{ \lambda^{\text{ckl}}(\boldsymbol{s}_i, t_i; \boldsymbol{\theta}_{\text{ckl}}) \right\}, \qquad X^{\text{pref}}(\boldsymbol{\cdot}) \sim \mathcal{GP}(\boldsymbol{\omega}_1), \\ N_i^{\text{spc}} \mid N_i^{\text{ckl}}, p^{\text{spc}}, \boldsymbol{\theta}_{\text{spc}} \sim \text{Bin} \{ N_i^{\text{ckl}}, p^{\text{spc}}(\boldsymbol{s}_i, t_i; \boldsymbol{\theta}_{\text{spc}}) \}, \\ Z_i \mid \mu, \boldsymbol{\theta}_{\mu}, \sigma, \boldsymbol{\theta}_{\sigma} \sim \text{GEV} \{ \mu(\boldsymbol{s}_i, t_i; \boldsymbol{\theta}_{\mu}) \mid \sigma(\boldsymbol{s}_i; \boldsymbol{\theta}_{\sigma}), \xi \}, \end{array} \right.$

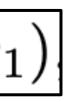


where

KOH AND OPITZ (2024)

Bayesian **Hierarchical** Models





Saturating effect of observational effort

- Observed first arrival is biased towards later dates for low effort ulletbut is the true one for very high effort
- Implementation: $Z_i \sim \text{GEV}(\mu_i, \sigma_i)$ with $\mu_i = g(\text{Predictors}_i, \text{Effort}_i)$ lacksquare
 - \rightarrow Nonlinear function g reaches (unknown) finite upper bound for very high effort \rightarrow Infer g from data

1.2 - \rightarrow Set very high effort for bias-corrected predictions 0.9 g(x_{bound}, x_{effort}) Source of high computational complexity 0.3 -0.0 -2 2 0 Xeffort

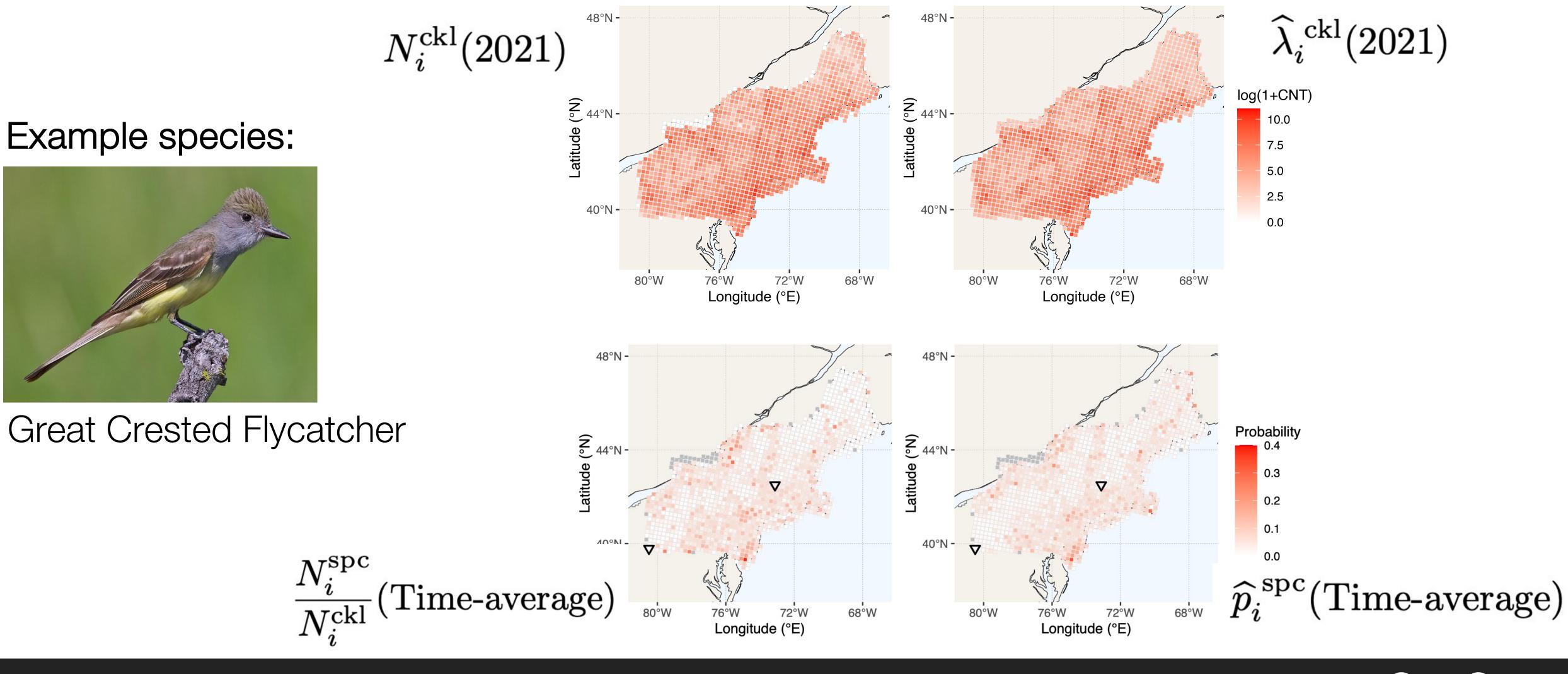
Bayesian **Hierarchical** Models

Extreme-Value Theory

< 26 >

Goodness-of-fit of estimated models

- Slight differences due to information shared from BBS

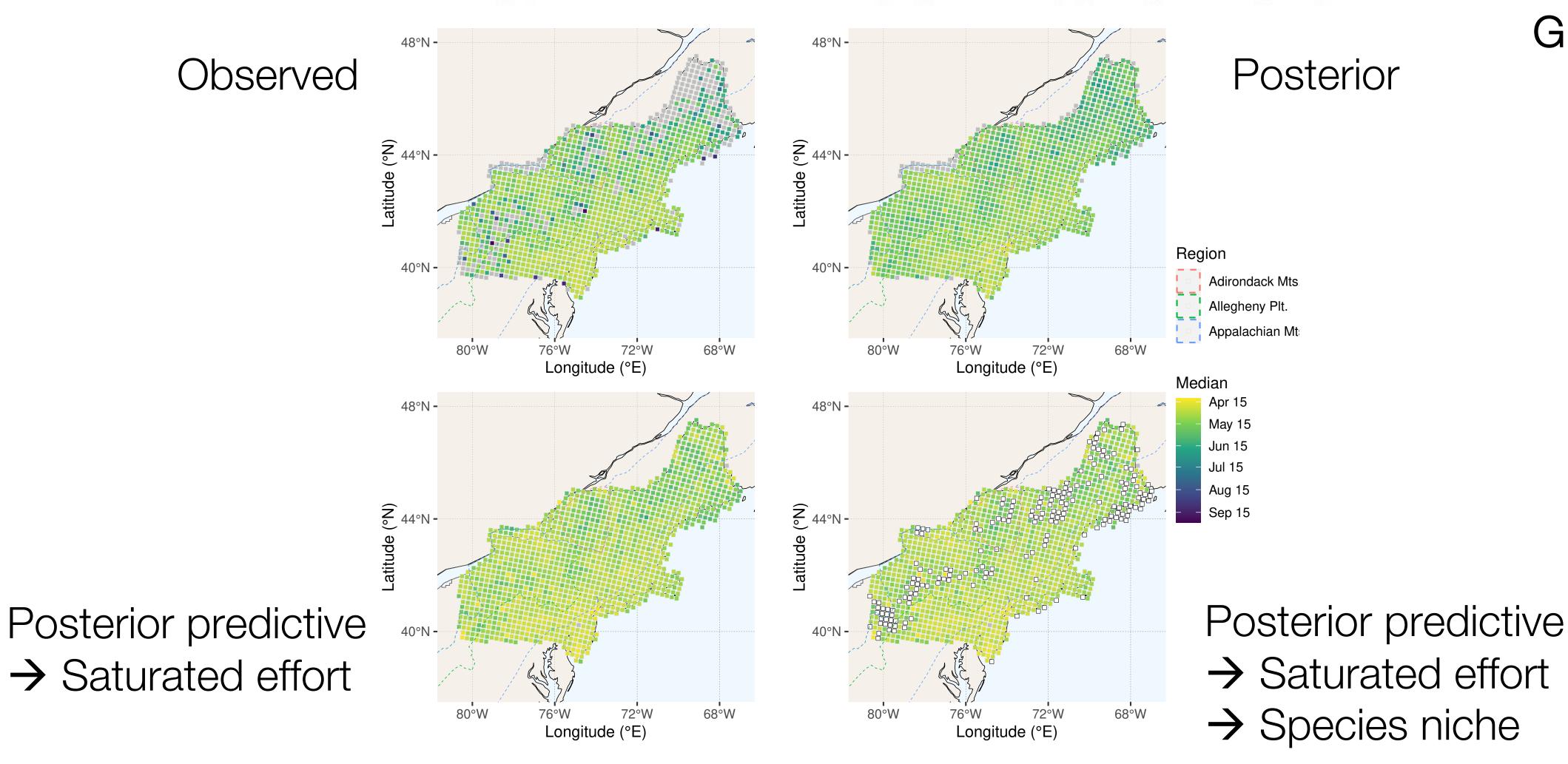


Generally good match of eBird observations (left maps) with posterior means (right maps)

27 > $\langle \rangle$

Illustration of bias-corrected prediction of first arrivals (2022)

- Based on Generalised Extreme-Value response \bullet
- Bias-corrected prediction by fixing saturated observational effort \bullet



 $Z_i \mid \mu, \theta^{\mu}, \sigma, \theta_{\sigma} \sim \text{GEV}\{\mu(\boldsymbol{s}_i, t_i; \boldsymbol{\theta}_{\mu}), \sigma(\boldsymbol{s}_i; \boldsymbol{\theta}_{\sigma}), \xi\}$

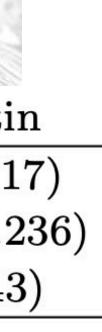
Great Crested Flycatcher

< 28 >

Illustration of bias-corrected prediction of first arrivals (2022), cont'd

- Table of estimated key parameters and first arrival dates for two pixels
- Estimated (not bias-corrected) first arrivals tend to occur relatively earlier for
 - higher Preference,
 - higher Activity and
 - in the core area of the niche

Species	Chimney Swift	Great Crested Flycatcher	Chestnut-sided Warbler	Purple Martin
$\hat{ heta}^{\mathrm{pref}}$	$0.191 \ (0.184, 0.202)$	0.204 (0.199, 0.21)	0.187 (0.183, 0.191)	0.2 (0.178, 0.21)
$\hat{ heta}^{\mathrm{act}}$	-0.15 (-0.217,-0.061)	-0.818 (-0.911,-0.696)	-0.548 ($-0.619, -0.454$)	-0.03 (-0.269,0.2
$\hat{\theta}^{\text{niche-GEV}} (\times 10^{-2})$	4.9(4.664, 5.134)	4(3.894, 4.133)	0.2(0.17, 0.278)	6 (5.541, 6.443)
Observed	NA	NA	NA	NA
Predicted	09/05	03/05	21/05	07/06
Debiased	03/04	13/04	03/05	$\frac{28}{03}$
Observed	01/05	04/05	04/05	29/06
Predicted	09/05	15/05	12/05	$\frac{12}{05}$
Debiased	22/04	05/05	03/05	07/04



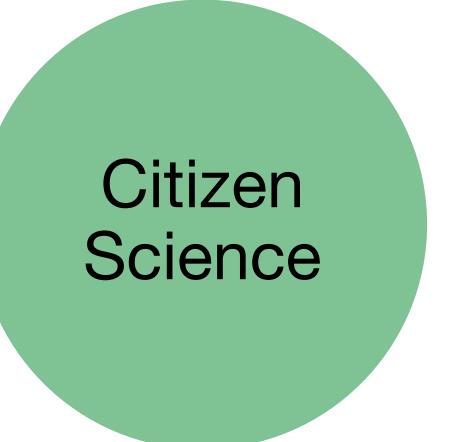
Discussion: Ecological data fusion using latent processes

- Incomplete and biased observation of true processes \bullet
- Interpretable latent processes for effort and relevant ecological properties \rightarrow Identifiability thanks to shared random effects, but challenging validation
- Towards spatiotemporal, not purely spatial, modelling \rightarrow Improve modelling of temporal dynamics Requires disentangling complex observational/ecological dynamics
- Could we implement shared latent processes in other learning algorithms? lacksquare(GAMs, ANNs, Random Forests...)

Bayesian Hierarchical Models

< 30 >

Discussion: Bias and uncertainty reduction



- Checklist data, such as eBird, allow generating pseudo-absences, but many opportunistic datasets are less structured
- Data fusion of opportunistic and structured data in *Integrated Species Distribution Models* is crucial (Fithian et al 2015; Isaac et al 2020)
- Collecting additional exhaustive field data may be necessary

 → Explore optimal sampling design through simulation studies?

Discussion: Opportunities for ecological extreme-value analysis

Extreme-Value Theory

- •
- lacksquare

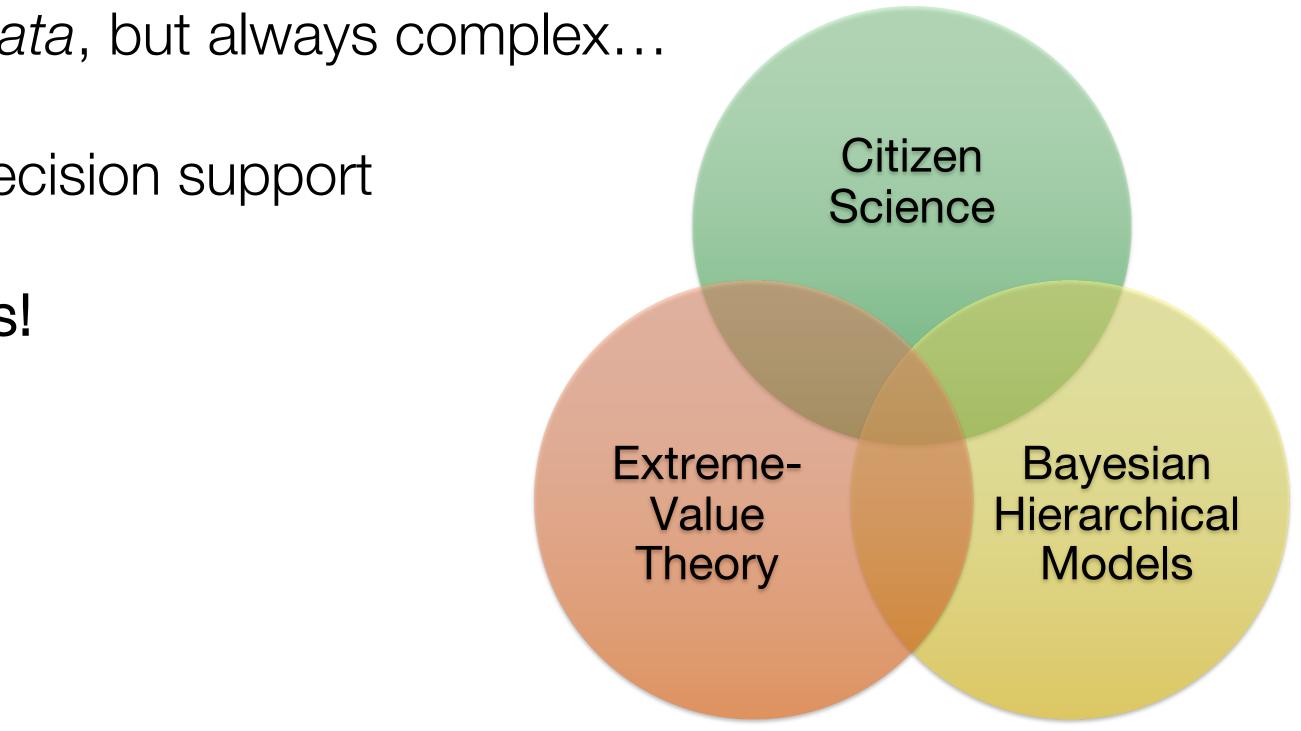
EVT generally less relevant for discrete data but promising for modelling extreme phenological events, such as first arrivals

EVT widely used for extreme climate and environmental events \rightarrow Such events can drive strong species population shifts \rightarrow Focus on specific events, not only long-term climate averages \rightarrow Probabilities and simulation for high-impact events

Outlook

- Rather basic handling of covariates and time trends in our model could be improved
- observational effort during training
- Ecological datasets: Small Data and Big Data, but always complex...
 - \rightarrow Wide opportunities for modelling and decision support
 - \rightarrow An exciting playground for statisticians!

Extrapolated predictions could be validated using hold-out data by artificially reducing



Food for thought

This work:

Koh, Opitz (2024). Extreme-value modelling of migratory bird arrival dates: Insights from citizen science data. Journal of the Royal Statistical Society, Series A (Statistics in Society).

Other literature:

- Adjei et al. (2023). A structural model for the process of collecting biodiversity data. Authorea Preprints. \bullet
- Adjei et al. (2023). The Point Process Framework for Integrated Modelling of Biodiversity Data. arXiv:2311.06755. lacksquare
- Belmont et al. (2024). Spatio-temporal Occupancy Models with INLA. arXiv:2403.10680. lacksquare
- Coles (2001). An introduction to statistical modeling of extreme values. Springer. lacksquare
- Diggle et al. (2010). Geostatistical inference under preferential sampling. Journal of the Royal Statistical Society Series C: lacksquareApplied Statistics.
- lacksquareMethods in Ecology and Evolution.
- lacksquarepresence-only data. Ecological Monographs.
- lacksquare
- lacksquare
- lacksquare**Ecological Statistics.**
- Journal of Agricultural, Biological and Environmental Statistics.

Fithian et al. (2015). Bias correction in species distribution models: pooling survey and collection data for multiple species.

Gelfand & Shirota (2019). Preferential sampling for presence/absence data and for fusion of presence/absence data with

Isaac et al. (2020). Data integration for large-scale models of species distributions. Trends in Ecology & Evolution. Lindgren et al. (2024). inlabru: software for fitting latent Gaussian models with non-linear predictors. arXiv:2407.00791. Tang et al. (2021). Modeling spatially biased citizen science effort through the eBird database. Environmental and

Wijeyakulasuriya et al. (2024). Modeling First Arrival of Migratory Birds Using a Hierarchical Max-Infinitely Divisible Process.

< 34 >

